Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at:

Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Premeasure Spaces, Tight Functions And Extension toQuasi*-Measure

Bhawna Singh,

Dr. S. P. M. Government P.G. College, Bhadohi, U.P., India, 221401 bhawna.singh1973@gmail.com

Abstract

The present paper deals with the theory of [0, 1] valued maps defined on a nonempty set X. We have concentrated over the study of two types of functions, viz. tight functions and smooth functions. The notions of lower and upper envelopes of a function β defined on a sublattice K of I^X are introduced, and are extensively used to prove several results. Finally it is obtained that every supermodular and smooth from above function can be extended to an inner regular quasi*-measure.

Introduction

In measure theory, a basic procedure is that of extending the notion of a "measure" on a given class of sets to a larger class of sets. Kelley, Nayak and Srinivasan [4] proved that a nonnegative real valued function μ defined on a lattice A of sets is a premeasure (meaning that it extends to a countably additive measure on a δ -ring of sets containing A) provided μ is tight and continuous at ϕ . The extension of this theorem to the case of a real valued (not necessarily nonnegative real valued) function is dealt in [9]. In 1981, Morales [8] established a quite general extension theorem for a uniform semigroup-valued tight set function λ on a lattice L, the domain of extension being the σ -ring generated by L. He also discussed the extension of λ on the σ -algebra of locally L-measurable sets. The problem of generation of measures by tight functions defined on a lattice of sets has been taken up by several workers [2, 6, 10, 11, 12]. Adamski [1] proved that every nonnegative, semifinite, smooth at ϕ , tight function defined on a lattice of sets can be extended to an inner regular measure. Besides proving results on the approximation of measurable sets by members of a lattice A, Kelley and Srinivasan [5] proved that every function $\mu: A \to R^+$, which is tight and smooth from above at ϕ is a premeasure (here A is closed under countable intersections). In [9], a weaker condition for tightness than in [5] is used, aiming at its

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

adaptation to the vector valued case. Recently we have obtained a Jordan decomposition type theorem for a weakly tight function under suitable conditions [7].

In Section 2 of this paper we have proved a theorem on characterization of a modular [0, 1] valued function β defined on a lattice K of elements in I^X . The notions of lower and upper envelopes of β , introduced in this section, are extensively used in the rest of the paper. These notions lead to the definition of a tight function, a particular case of a ρ -tight function which turns out to be monotone and modular.

Section 3 deals with the study of functions which are smooth from above and we also obtain that if $\beta: K \to I$ is smooth from above, then for any $f \in K_{\delta}$, its upper envelope $\beta^*(f)$ can be expressed as the limit of the sequence $\{\beta(f_n)\}_{n=1}^{\infty}$, where $\{f_n\}_{n=1}^{\infty}$ is a sequence in K decreasing to f. While giving the notion of a $\hat{\beta}$ -function with the help of upper envelopes, we observe that $\hat{\beta}$ is K_{δ} -inner regular. Finally, it is proved that every supermodular and smooth from above function defined on K can be extended to a K_{δ} -inner regular quasi*-measure.

Notations. Throughout this paper, X denotes a nonempty set and I = [0, 1] is the closed unit interval of the real line R; C denotes a subfamily of I^X of all functions from X to I; K stands for a sublattice of I^X containing the least element $\mathbf{0}$ and the greatest element $\mathbf{1}$, where $\mathbf{0}$ and $\mathbf{1}$ are constant functions sending each $x \in X$ to 0 and 1 respectively; $\beta : K \to I$ and $\rho : I^X \to I$ denote functions satisfying $\beta(\mathbf{0}) = 0$ and $\rho(\mathbf{0}) = 0$. We call the triple (X, K, β) a premeasure space. The family of all countable meets of elements in K is denoted by K_S .

2. Measuring Envelopes and Tight Functions

Let $C \subseteq I^X$ be a lattice and $\xi : C \to I$ be a function. We call ξ monotone if, $f, g \in C$, $g \le f \Rightarrow \xi(g) \le \xi(f)$. The function ξ is to be called modular if $\xi(f) + \xi(g) = \xi(f \lor g) + \xi(f \land g), f, g \in C$. A function $\beta : K \to I$ is called *semifinite* if, for every $f \in K$, $\beta(f) = \sup \{ \beta(g) : g \le f, g \in K \}$.

Proposition 2.1. Let (X, K, β) be a premeasure space. The function β is modular if and only if

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

$$\beta(f_1) + \beta(g_1) = \beta(f_2) + \beta(g_2),$$
 2.1.1

where $f_1, f_2, g_1, g_2 \in K$ with $f_1 \wedge g_1 = f_2 \wedge g_2$ and $f_1 \vee g_1 = f_2 \vee g_2$.

Proof. Let β be modular. For $f_1, f_2, g_1, g_2 \in K$ such that $f_1 \wedge g_1 = f_2 \wedge g_2$ and $f_1 \vee g_1 = f_2 \vee g_2$

,we have
$$\beta(f_1 \vee g_1) = \beta(f_2 \vee g_2)$$
, and

$$\beta(f_1) + \beta(g_1) - \beta(f_1 \wedge g_1) = \beta(f_2) + \beta(g_2) - \beta(f_2 \wedge g_2)$$
. Since $f_1 \wedge g_1 = f_2 \wedge g_2$, we get $\beta(f_1) + \beta(g_1) = \beta(f_2) + \beta(g_2)$.

Conversely, let (2.1.1) hold. Let $f,g \in K$. Since $((f \lor g) \lor (f \land g)) = f \lor g$ and $((f \lor g) \land (f \land g)) = f \land g$, (2.1.1) yields $\beta(f) + \beta(g) = \beta(f \lor g) + \beta(f \land g)$, i.e. β is modular.

Proposition 2.2. Let $\beta: K \to I$ be a function. Suppose that $f_1, f_2, g_1, g_2 \in K$, $f_1 \le f_2, g_1 \le g_2$ and $f_2 - f_1 = g_2 - g_1$. If β satisfies $\beta(f_2) - \beta(f_1) = \beta(g_2) - \beta(g_1)$, then β is modular.

Proof. Let $f, g \in K$. Since $(f \vee g) - f = g - (f \wedge g)$, we get $\beta(f \vee g) - \beta(f) = \beta(g) - \beta(f \wedge g)$, or $\beta(f \vee g) + \beta(f \wedge g) = \beta(f) + \beta(g)$.

Definitions 2.3. We define $\beta_*: I^X \to I$ and

$$\beta_*(f) = \sup \{ \beta(g) : g \le f, g \in K \}$$

and

$$\beta^*(f) = \inf \{ \beta(g) : f \le g, g \in K \},\$$

for $f \in I^X$ and call β_* and β^* the *lower envelope* and the *upper envelope of* β respectively.

We obtain:

- (i) $\beta^*(\mathbf{0}) = 0 = \beta_*(\mathbf{0})$;
- (ii) both β_* and β^* are monotone;
- (iii) $\beta^* \mid \mathbf{K} \leq \beta \leq \beta_* \mid \mathbf{K}$;
- (iv) β is semifinite iff β is monotone iff $\beta^* \mid K = \beta = \beta_* \mid K$.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Definitions 2.4. Let $\beta: K \rightarrow I$ and $\rho: I^X \rightarrow I$ with $\beta(\mathbf{0}) = 0$ and $\rho(\mathbf{0}) = 0$. Then β is called ρ -tight if

$$\beta(f_2) = \beta(f_1) + \rho(f_2 - f_1), f_1, f_2 \in K, f_1 \leq f_2.$$

The function β is called *tight* if β is β_* -tight.

Proposition 2.5. Let β be ρ -tight. Then

- (i) ρ is an extension of β ;
- (ii) β is monotone;
- (iii) Bis modular.

Proof. We shall proved only (iii).

(iii) Let $f_1, f_2 \in K$. Since $(f_1 \vee f_2) - f_2 = f_1 - (f_1 \wedge f_2)$, we get $\beta(f_1 \vee f_2) - \beta(f_2) = \rho(f_1 \vee f_2 - f_2) = \rho(f_1 - f_1 \wedge f_2) = \beta(f_1) - \beta(f_1 \wedge f_2)$.

Definitions 2.6. Let $\rho: I^X \to I$ be a function with ρ (0) = 0. We call $f \in I^X \rho$ measurable if

$$\rho(g) = \rho(g \wedge f) + \rho(g - g \wedge f)$$

for all g in I^X . The family of all ρ -measurable functions is denoted by $M(\rho)$. We define

$$M(\rho; K) = \{ f \in I^X : \rho(g) = \rho(g \wedge f) + \rho(g - g \wedge f) \text{ for all } g \in K \};$$

and, for $D \subseteq I^X$, $F(D) = \{ f \in I^X : f \land g \in D, \text{ for all } g \in D \}.$

We obtain:

- (i) The functions **0** and **1** are ρ -measurable.
- (ii) If f is ρ -measurable, then $\rho(f') = \rho(\mathbf{1}) \rho(f)$, for $\rho(\mathbf{1}) = \rho(\mathbf{1} \wedge f) + \rho(\mathbf{1} \mathbf{1} \wedge f)$. Here $f' = \mathbf{1} - f$.

Proposition 2.7.*If* $K \subseteq M(\rho; K)$ *and* ρ *is an extension of* β *, then* β *is* ρ -*tight.*

Proof. Let $f_1, f_2 \in K$ with $f_1 \leq f_2$. Then $f_1, f_2 \in M(\rho, K)$ and so, for any $g \in K$, $\rho(g) = \rho(g \wedge f_i) + \rho(g - g \wedge f_i)$, i = 1, 2. Consequently,

$$\beta(f_2) = \rho(f_1 \land f_2) + \rho(f_2 - f_1 \land f_2) \qquad = \beta(f_1) + \rho(f_2 - f_1), \text{ showing that } \beta \text{ is } \rho\text{-tight.}$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Proposition 2.8. Let $\rho: I^X \to I$ satisfy $\rho(\mathbf{0}) = 0$. Let β be ρ -tight. Then

(i) $K \subset M(\rho, K)$;

(ii) for any
$$D \subset I^X$$
 with $K \subset D \subset M(\rho, K)$, $F(D) \subset M(\rho, K)$.

Proof. (i) Since β is ρ -tight, by Proposition 2.5, ρ is an extension of β . Let $f \in K$. Then, for any $g \in K$, $\rho(g) = \beta(g) = \beta(g \land f) + \rho(g - g \land f) = \rho(g \land f) + \rho(g - g \land f)$. Hence $K \subseteq M(\rho, K)$.

(ii) Let $g \in F(D)$. Then $f \land g \in D \subseteq M(\rho, K)$, for each $f \in D$. Let $h \in K$. Then $h \in D$, and so $h \land g \in M(\rho, K)$. Also

$$\rho(h) = \rho(h \land h \land g) + \rho(h - h \land h \land g) = \rho(h \land g) + \rho(h - h \land g),$$

which yields that $g \in M(\rho; K)$.

Theorem 2.9 . Let β be monotone. Then the following statements are equivalent:

- (i) β is tight.
- (ii) $K \subseteq M (\beta *; K)$.
- (iii) $F(K) \subseteq M(\beta_*; K)$.

Proof. Since β is monotone, by (2.3) (iv), β * | $K = \beta$.

- $(i) \Rightarrow (ii)$. Follows from Proposition 2.8 (i).
- (ii) \Rightarrow (i). Follows from Proposition 2.7.
- (ii) \Rightarrow (iii). Let $g \in F(K)$. Then, for each $h \in K$, $h \land g \in K \subseteq M(\beta_*; K)$.

Hence, for $h \in K$, $\beta_*(h \land g) + \beta_*(h - h \land g) = \beta_*(h)$, i.e. $g \in M(\beta_*; K)$.

Finally, since $K \subseteq F(K)$, (iii) \Rightarrow (ii) holds.

Similarly, we obtain the following:

Proposition 2.10.Let β be monotone. Then (i) \Rightarrow (ii) \Rightarrow (iii), where

- (i) $F(K) \subseteq M(\beta_*)$;
- (ii) $K \subset M(\beta_*)$;
- (iii) β is tight.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Smoothness From above and Quasi*-Measure

Definition 3.1. Let $C \subseteq I^X$. A function $\xi : C \to I$ is called *smooth from above at* $f \in C$ if ξ is monotone and, for any sequence $\{f_n\}_{n=1}^{\infty}$ in C with $f_n \downarrow f$,

$$\lim_{n\to\infty}\xi(f_n)=\xi(f).$$

If ξ is smooth from above at each $f \in C$, then ξ is to be called *smooth from above*.

Remark 3.2. A function $\beta: K \rightarrow I$ is smooth from above at $f \in K$ if and only if β is monotone and, for any sequence $\{f_n\}_{n=1}^{\infty}$ in K with $f_n \downarrow f$,

$$\beta(f) = \inf \{ \beta(g) : g \in K \text{ and } g \ge f_n \text{ for some } n \}.$$

Definition 3.3. We call a family $C \subseteq I^X$ semicompact if, every sequence in C having finite meet property (i.e. any finite subcollection of C has nonzero meet) has nonzero meet.

Theorem 3.4. If β : $K \to I$ is monotone and K is semicompact, then β is smooth from above at $\mathbf{0}$.

Proof. Let $\{f_i\}_{i=1}^{\infty}$ be a sequence in K with $f_i \downarrow \mathbf{0}$. Then $\wedge f_i = \mathbf{0}$. Since K is semicompact, $f_n = \mathbf{0}$ for some n, and so $\beta(f_m) = 0$ for $m \ge n$. Thus $\lim_{n \to \infty} \beta(f_n) = 0$, showing that β is smooth at $\mathbf{0}$.

Lemma 3.5.Let $\beta: K \to I$ be smooth from above. Then, for any $f \in K_{\delta}$, there exists a sequence $\{f_n\}_{n=1}^{\infty}$ in K such that $\{f_n\} \downarrow f$. For each such sequence $\beta^*(f) = \inf_n \beta(f_n)$.

Proof. Let $f \in K_{\delta}$. Then $f = \bigwedge_{n=1}^{\infty} h_n$ for some sequence $\{h_n\}$ in K, which yields a sequence $\{f_n\}_{n=1}^{\infty}$ in K such that $f_n \downarrow f$.

Let $g \in K$ such that $f \leq g$. Then $\{g \vee f_n\} \downarrow g$ and so $\bigwedge_{n=1}^{\infty} (g \vee f_n) = g$. Since β is smooth from above, we have $\lim_{n \to \infty} \beta(g \vee f_n) = \inf_n \beta(g \vee f_n) = \beta(g)$. Also, since β is monotone, $\beta(f_n) \leq \beta(g \vee f_n)$, for each n, which implies that $\inf \beta(f_n) \leq \beta(g)$. Consequently,

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

inf $\beta(f_n) \le \beta^*(f)$. Next, for any $n \in N$, we have $f \le f_n$, and so $\beta^*(f) \le \beta^*(f_n) = \beta(f_n)$.

Hence $\beta^*(f) \le \inf_n \beta(f_n)$. Thus $\beta^*(f) = \inf_n \beta(f_n)$.

Definition 3.6. We define $\hat{\beta}: I^X \to I$ by

$$\hat{\beta}(f) = \sup\{\beta^*(g) : g \le f, g \in K_{\delta}\}, f \in I^X.$$

We obtain the following:

- (i) $\hat{\beta}(\mathbf{0}) = 0$ and $\hat{\beta}$ is monotone.
- (ii) $\hat{\beta} \leq \beta^*$.
- (iii) $\hat{\beta}/K_{\delta} = \beta^*/K_{\delta}$, in particular, $\hat{\beta}/K = \beta^*/K$.
- (iv) If β is monotone, then $\hat{\beta}/K = \beta$, i.e. $\hat{\beta}$ is an extension of β .

Proposition 3.7. *If* $K = K_{\delta}$ *then*

- (i) $\hat{\beta} \leq \beta_*$,
- (ii) β is semifinite $\Rightarrow \hat{\beta} = \beta_*$.

Proof. (i) Let $f \in I^X$ and $g \in K$ with $g \leq f$. Since $\beta^* \mid K \leq \beta_* \mid K$ and β_* is monotone, we get $\beta^*(g) \leq \beta_*(g) \leq \beta_*(f)$. Hence $\hat{\beta}(f) \leq \beta_*(f)$.

(ii) For $f \in I^X$, using 2.3 (iv), we get $\hat{\beta}(f) = \beta_*(f)$.

Theorem 3.8.*If* β : $K \rightarrow Iis$ smooth from above, then $\beta^*/K_\delta is$ smooth from above.

Proof. Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence in K_{δ} and $f_n \downarrow f \in K_{\delta}$. For each n, we obtain a sequence $\{f_{nm}\}_{m=1}^{\infty}$ in K such that $\{f_{nm}\}_{m=1}^{\infty} \downarrow f_n$ and $\beta^*(f_n) = \lim_{m \to \infty} \beta(f_{nm})$. For $n \in N$, set $g_n = f_{1n} \land f_{2n} \land \dots \land f_{mn}$. Then $g_n \in K$, $\{g_n\}$ is decreasing, $g_n \geq f_n$ for all n, and $g := \lim_{n \to \infty} g_n \geq f_n = f$. Also $f_{kn} \geq g_n$ for $k \leq n$. Therefore $f_k = \lim_{n \to \infty} f_{kn} \geq g$. It follows that $f = \land f_k \geq g$. Thus f = g. We obtain, by Lemma 3.5, $\beta^*(f) = \lim_{n \to \infty} \beta(g_n) \geq \lim_{n \to \infty} \beta^*(g_n) \geq \lim_{n \to \infty} \beta^*(f_n)$.

http://www.ijmra.us, Email: editorijmie@gmail.com

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Also, since $f \le f_n$ for each n, and β^* is monotone, we conclude that $\beta^*(f) \le \lim_{n \to \infty} \beta^*(f_n)$. Thus $\beta^*(f) = \lim_{n \to \infty} \beta^*(f_n)$, i.e. $\beta^*(f) = \lim_{n \to \infty} \beta^*(f_n)$, i.e. $\beta^*(f) = \lim_{n \to \infty} \beta^*(f) = \lim_{n \to \infty$

Definition 3.9. Let $C \subseteq I^X$ be a lattice. Then $\xi : C \to I$ is called *supermodular* (submodular respectively) if, for $f, g \in C, \xi(f) + \xi(g) \le \xi(f \vee g) + \xi(f \wedge g)$ $(\xi(f) + \xi(g) \ge \xi(f \vee g) + \xi(f \wedge g)$ respectively).

Proposition 3.10. (i) *If* β *is supermodular, then* β_* *is supermodular.*

(ii) If β is submodular, then β^* is submodular.

Proof. (i) Let $f_1, f_2 \in I^X$. For $\varepsilon > 0$, we obtain $g_1, g_2 \in K$, $f_1 \ge g_1$, $f_2 \ge g_2$ such that $\beta_*(f_1) - \varepsilon/2 < \beta(g_1)$ and $\beta_*(f_2) - \varepsilon/2 < \beta(g_2)$. It follows that

$$\beta_*(f_1) + \beta_*(f_2) - \varepsilon < \beta(g_1 \vee g_2) + \beta(g_1 \wedge g_2) \le \beta_*(f_1 \vee f_2) + \beta_*(f_1 \wedge f_2).$$

Since ε is arbitrary, we get $\beta_*(f_1) + \beta_*(f_2) \le \beta_*(f_1 \lor f_2) + \beta_*(f_1 \land f_2)$.

Proof of (ii) follows analogously.

Theorem 3.11.*Let* $\beta:K \rightarrow I$ *be smooth from above. Then* $(1) \Rightarrow (2) \Rightarrow (3)$ *, where*

- (1) β is supermodular;
- (2) $\beta^* \mid K_{\delta}$ is supermodular;
- (3) (a) $\hat{\beta}$ is supermodular;
 - (b) $\hat{\beta}$ is smooth from above.

Proof. (1) \Rightarrow (2). Let β be supermodular. Let $f, g \in K_{\delta}$ Then, by Lemma 3.5, there exist sequences $\{f_n\}_{n=1}^{\infty}$ and $\{g_n\}_{n=1}^{\infty}$ in K such that $f_n \downarrow f$, $g_n \downarrow g$, $\beta^*(f) = \lim_{n \to \infty} \beta(f_n)$ and $\beta^*(g) = \lim_{n \to \infty} \beta(g_n)$. Since $(f_n \land g_n) \downarrow (f \land g)$, $(f_n \lor g_n) \downarrow f \lor g$ and β is supermodular, we obtain using Lemma 3.5,

$$\beta^*(f) + \beta^*(g) = \lim_{n \to \infty} \beta(f_n) + \lim_{n \to \infty} \beta(g_n) = \beta^*(f \vee g) + \beta^*(f \wedge g).$$

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

(2) \Rightarrow (3) (a). Let $f, g \in I^X$. For $\varepsilon > 0$, we obtain h_1, h_2 in K_δ such that $h_1 \leq f, h_2 \leq g$,

$$\hat{\beta}(f) - \varepsilon/2 < \beta^*(h_1)$$
 and $\hat{\beta}(g) - \varepsilon/2 < \beta^*(h_2)$. It follows that

$$\hat{\beta}(f) + \hat{\beta}(g) - \varepsilon < \beta^*(h_1) + \beta^*(h_2) \le \hat{\beta}(f \lor g) + \hat{\beta}(f \land g).$$

Since ε is arbitrary, we get

$$\hat{\beta}(f) + \hat{\beta}(g) \le \hat{\beta}(f \lor g) + \hat{\beta}(f \land g)$$

 $(2) \Rightarrow (3)$ (b). Suppose that $\{f_n\}_{n=1}^{\infty}$ is a sequence in I^X such that $\{f_n\} \downarrow f, f \in I^X$. Since $\hat{\beta}$ is monotone, we have $\hat{\beta}(f_n) \geq \hat{\beta}(f)$, for each n, which yields $\lim_{n \to \infty} \hat{\beta}(f_n) \geq \hat{\beta}(f)$.

We proceed to prove that $\lim_{n\to\infty} \hat{\beta}(f_n) \le \hat{\beta}(f)$. Let $\varepsilon > 0$. We choose $g_n \in K_{\delta}$ such that $g_n \le f_n$ and

$$\beta^*(g_n) > \hat{\beta}(f_n) - \varepsilon/2^n, \ n = 1, 2, \dots$$
 (3.11.1)

Put $h_n = g_1 \wedge g_2 \wedge ... \wedge g_n$. Then $h_n \in K_{\delta}$ and $\{h_n\} \downarrow h \in K_{\delta}$ Now, by (3.11.1), we get $\beta^*(h_1) = \beta^*(g_1) > \hat{\beta}(f_1) - \varepsilon/2$. Since $\beta^*|K_{\delta}$ is supermodular, using (3.11.1),

$$\beta^*(h_2) = \beta^*(g_1 \wedge g_2) = \hat{\beta}(f_2) - (\varepsilon/2 + \varepsilon/2^2).$$

Suppose that $\beta^*(h_m) \ge \hat{\beta}(f_m) - \sum_{i=1}^m \frac{\varepsilon}{2^i}$. Using supermodularity of β^* on K_{δ} and (3.11.1), we

obtain

$$\beta^*(h_{m+1}) \ge \beta^*(h_m \land g_{m+1}) \ge \beta^*(h_m) + \beta^*(g_{m+1}) - \beta^*(h_m \lor g_{m+1})$$

$$> \hat{\beta}(f_m) - \sum_{i=1}^m \frac{\varepsilon}{2^i} + \hat{\beta}(f_{m+1}) - \frac{\varepsilon}{2^{m+1}} - \hat{\beta}(f_m \vee f_{m+1})$$

$$=\hat{\beta}(f_{m+1})-\sum_{i=1}^{m+1}\frac{\varepsilon}{2^{i}}.$$

Thus, by induction, we deduce that

$$\beta^*(h_n) \ge \hat{\beta}(f_n) - \sum_{i=1}^n \frac{\varepsilon}{2^i}, \text{ for all } n.$$
 (3.11.2)

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

Note that, since $g_n \le f_n$, for all n, $h = \bigwedge_{n=1}^{\infty} h_n = \bigwedge_{n=1}^{\infty} g_n \le \bigwedge_{n=1}^{\infty} f_n = f$. Also, by Theorem 3.8, $\beta^* \mid K_{\delta}$

is smooth from above. Hence, by (3.11.2), we obtain

$$\hat{\beta}(f) \ge \beta^*(h) = \lim_{n \to \infty} \beta^*(h_n) \ge \lim \hat{\beta}(f_n) - \varepsilon$$
,

and therefore $\hat{\beta}(f) \ge \lim_{n \to \infty} \hat{\beta}(f_n)$. Thus $\hat{\beta}$ is smooth from above.

Definition 3.12. Let $C \subseteq I^X$. We call a function $\rho: I^X \to I$ *C-inner regular* if, for each $f \in I^X$,

$$\rho(f) = \sup \{ \rho(g) : g \le f, g \in \mathbb{C} \}.$$

Proposition 3.13. The function $\hat{\beta}$ is K_{δ} -inner regular.

Proof. Since $\beta^* | K_{\delta} = \hat{\beta} | K_{\delta}$, the result follows.

Definition 3.14. We call a supermodular, smooth from above function $\xi: I^X \to I$ a *quasi*-measure* on X if $\xi(\mathbf{0}) = 0$, and call the pair (X, ξ) , a *quasi*-measure space*.

Theorem 3.15. Every supermodular, smooth from above function defined on a lattice K in I^X containing $\mathbf{0}$ and $\mathbf{1}$, can be extended to a K_δ -inner regular quasi*-measure on I^X .

Proof. Follows from Definition 3.6 (i), Theorem 3.11 and Proposition 3.13.

References

- [1] W. Adamski, Tight set functions and essential measure, in: D. Kölzow and D. Maharam-Stone(Ed.), Lecture Notes inMath.945, Springer-Verlag, 1981, 1-14.
- [2] J.R. Choksi, On compact contents, *J. London Math. Soc.* **33** (1958), 387-398.
- [3] P.R. Halmos, *Measure Theory*, D. Van Nostrand Company, Inc., New York, 1950.
- [4] J.L. Kelley, M.K. Nayak and T.P. Srinivasan, *Pre-measures on Lattices of Sets* II Sympos. *On Vector Measures*, Salt Lake City Utah, 1972.
- [5] J.L. Kelley and T.P. Srinivasan, Premeasures on lattice of sets, *Math. Ann.* **190** (1971), 233-241.

Vol. 10 Issue 09, September 2021, ISSN: 2320-0294 Impact Factor: 6.765

Journal Homepage: http://www.ijmra.us, Email: editorijmie@gmail.com

Double-Blind Peer Reviewed Refereed Open Access International Journal - Included in the International Serial Directories Indexed & Listed at: Ulrich's Periodicals Directory ©, U.S.A., Open J-Gage as well as in Cabell's Directories of Publishing Opportunities, U.S.A

- [6] J. Kisynski, On the generation of tight measures, *Studia Math.* **30** (1968), 141-151.
- [7] Mona Khare and Bhawna Singh, Weakly tight functions and their decomposition, *Int. Jour. of Math. and Math Sc.*, **48**(2)(1975),2991-2998
- [8] P. Morales, Extension of a tight set function with values in a uniform semigroup, in: D. Kölzow and D. Maharam-Stone(Ed.), Lecture Notes in Math.945 Springer-Verlag, 1981, 282-290.
- [9] M.K. Nayak and T.P. Srinivasan, Scalar and vector valued premeasures, *Proc. Amer. Math. Soc.* **48** (2) (1975), 391-396.
- [10] B.J. Pettis, On the extension of measures, *Ann. of Math.* 54 (1) (1951), 186-197.
- [11] A.S. Sastry and K.P.R. Sastry, Measure extensions of set functions over lattices of sets, *J. Indian Math. Soc.*41 (1977), 317-330.
- [12] F. Topsφe, Compactness in spaces of measures, *Studia Mathematica*, **36** (1970), 195-212.